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Abstract. Starting from the characterization of the past time evolution of market prices in terms of two
fundamental indicators, price velocity and price acceleration, we construct a general classification of the
possible patterns characterizing the deviation or defects from the random walk market state and its time-
translational invariant properties. The classification relies on two dimensionless parameters, the Froude
number characterizing the relative strength of the acceleration with respect to the velocity and the time
horizon forecast dimensionalized to the training period. Trend-following and contrarian patterns are found
to coexist and depend on the dimensionless time horizon. The classification is based on the symmetry
requirements of invariance with respect to change of price units and of functional scale-invariance in the
space of scenarii. This “renormalized scenario” approach is fundamentally probabilistic in nature and
exemplifies the view that multiple competing scenarii have to be taken into account for the same past
history. Empirical tests are performed on about nine to thirty years of daily returns of twelve data sets
comprising some major indices (Dow Jones, SP500, Nasdaq, DAX, FTSE, Nikkei), some major bonds
(JGB, TYX) and some major currencies against the US dollar (GBP, CHF, DEM, JPY). Our “renormalized
scenario” exhibits statistically significant predictive power in essentially all market phases. In contrast, a
trend following strategy and trend + acceleration following strategy perform well only on different and
specific market phases. The value of the “renormalized scenario” approach lies in the fact that it always
selects the best of the two, based on a calculation of the stability of their predicted market trajectories.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 89.90.+n Other areas of general interest to physicists

1 Introduction

The scientific method is fundamentally aimed at pre-
dicting novel phenomena. Famous examples include the
prediction by Einstein of the deviation of light by the
sun’s gravitation field, the prediction of the spin by Pauli,
the prediction of the existence of neutrinos by Fermi, of
the intermediate bosons within the electroweak theory by
Weinberg and Salam, etc. This aspect of prediction is ap-
preciated and practiced by a selected few. In contrast, es-
sentially all humans are fascinated by the prediction of the
future, and this has repeatedly captured the imagination
of successive civilizations and generations. Recent scien-
tific developments in the field of dynamical and complex
systems, particularly in the context of the mathematics
of algorithmic complexity [1], suggest that most complex
systems are computationally irreducible, i.e. the only way
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to decide about their evolution is to actually let them
evolve in time. Accordingly, the “dynamical” future time
evolution of complex systems would be inherently unpre-
dictable.

An interesting example of complex systems is provided
by the stock market and the time evolution of stock mar-
ket prices as a result of the interplay between buyers and
sellers. Many models have been formulated, with a re-
newed interest in the past few years on the part of physi-
cists, which are based on analogies with statistical physics
and biology (see for instance [2]). In this context, the im-
possibility of predictability is called the (weak) efficient
market and random walk hypotheses and is deeply in-
grained in the financial academic literature. This does pre-
vent analysts, traders and investors to attempt to beat the
market. In this goal, two classes of approaches are used:
while fundamental analysis looks at the markets or at spe-
cific companies from a purely economic perspective based
on company reports and many other variables including
statements from the Federal Reserve, technical analysts
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study the relationships between price, volume and other
variables obtained from trading. From looking closely at
these time series, they believe that buying and selling
orders have an enhanced probability of being profitable.
Technical analysts have thus developed or derived indica-
tors which show up particular aspects of market action.
Generally they fall into two types: “trend following” which
are based largely or the concept of a moving average, and
“oscillators” which are best suited to situations where the
price action appears to be bouncing around within certain
parameters, or price range.

In the academic literature, there is also increasing ev-
idences that even the most competitive markets are not
strictly efficient [3–5]. In particular, a set of studies in
the academic finance literature have reported anomalous
earnings which support technical analysis strategies [6–9]
(see [10] for a different view). A recent study of 60 techni-
cal indicators on 878 stocks over a 12-year period [11] finds
that the trading signals from technical indicators do on av-
erage contain information that may be of value in trading,
even if they generally underperform (without taking due
consideration to risk-adjustments of the returns) a buy-
and-hold strategy in a rising market by being relatively
rarely invested (they buy a stock for a short time and
then sell and keep the wealth in cash for a while before
reinvesting again).

Another class of studies views the market place as a
complex self-organizing system [3,12] which suggests that
technical analysis may have some value. This approach
views the traders develop strategies both fundamental,
technical and any mixture of them, which adapt and re-
act to the pattern these strategies create by their collec-
tive action. This concept is common to other systems in
Nature as well, including ions in a spin glass, cells in an
immune system, faults in the crust, etc. In the economy,
economic agents, banks, consumers, firms, or investors,
continually adjust their market moves, buying decisions,
prices, and forecasts to the situation these moves or deci-
sions or prices or forecasts together create. The challenge
is to understand how these actions, strategies, and expec-
tations react to and change with the aggregate patterns
these create. Since the self-organization is not instanta-
neous via the processes of adjustment and change as the
traders react, the market evolves leading to a novel ad-
justment of the traders. The market as a complex system
is a process that constantly evolve and unfold over time.
It might thus exhibit some degree of predictability in con-
trast to the efficient market hypothesis and the proof that
correctly anticipated prices are random [13].

Most trading systems fall into two classes.

– The first one is trend-following: the technical indica-
tors attempt to detect a significant trend and issue a
signal for the trader to profit from the trend.

– The second class is contrarian: the technical indicators
try to measure a change of trend. For instance, the os-
cillator indicators, which are used to model the cyclical
nature of markets, typically will filter the trend out of
prices, leaving only the remaining changes of trends.

Notwithstanding their multiple forms and sometimes
complicated formulations [14,15], technical indicators can
be seen as reducing essentially to combinations of mea-
surements of

1. a price velocity v ≡ d price/dt, defined as the rate of
change of the price (possibly over different time scales),
and of

2. a price acceleration g ≡ dv/dt, defined as the rate of
change of the price velocity.

The velocity is a measure of the strength of a trend,
while the acceleration quantifies its persistence. For in-
stance, when a market has been trending upward and
then begins to decelerate, an oscillator indicator will level
off, suggesting an approaching market top. Likewise, if a
market is trending downward and this trend decelerates,
then a bottom would be forecasted by the technical in-
dicators. This phenomenology has suggested qualitative
analogies with Newton’s law of classical motion, accord-
ing to which velocities (or momentum) change because
market forces are exerting their influence and produce ac-
celeration/deceleration.

This view is in contrast to the (weak) efficient mar-
ket and random walk hypotheses, deeply ingrained in the
financial academic literature, according to which future
variations of prices are unpredictable (at least from the
sole knowledge of past prices). Here, we develop a funda-
mental theory of technical analysis based on the idea that
trading signals, when they can be identified, quantify lo-
cal deviations from or equivalently defects of the normal
random walk state taken as a reference. Expressing the
random walk hypothesis as the fully symmetric state of
the market, we show that trading patterns correspond
to local breakdowns of this symmetry. Based on simple
symmetry principles, we show how to classify the possible
patterns based on the measurements of three fundamen-
tal dimensionless numbers that are found to characterize
a given market regime. The first one is the Froude number
defined by

F ≡ v2

p0g
, (1)

where p0 is the current price level, v (resp. g) is the
price velocity (resp. acceleration). It measures the rela-
tive strength of the trend with respect to the accelera-
tion/deceleration. The second dimensionless number is the
future over past horizon ratio, defined as the ratio of the
forecast time over the time interval used for detecting
the pattern. The third relevant parameter is the dimen-
sionless time interval TN used for detecting the pattern,
i.e. the reduced dimensionless learning period, expressed
as follows,

TN =
v

p0
tN ,

where tN is the learning period, or past horizon, expressed
in some dimensional time units (days for instance).
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In Section 2, we present the fundamental symmetry
principles that a theory of prices should follow which al-
lows us to constrain the dynamics. We then develop in Sec-
tion 3 the functional renormalization formalism adapted
to this problem that allows us to construct predictions in
a probabilistic sense. Section 4 applies our formalism to a
dozen markets and derives a classification of six fundamen-
tal market regimes. We discuss and compare the predictive
power of our approach in each market regime by using in-
tensive Monte-Carlo tests to obtain the 90% and 99% con-
fidence level for the null-hypothesis that our results could
derive from chance. Section 5 concludes. We stress that,
in all our empirical tests, future data has not been used
in the estimation of the quadratic approximations and in
the predictive scheme in any of the times series. In addi-
tion, there is no learning procedure and the tests do not
have to test for robustness and noise over-fitting by com-
paring an out-of-sample performance with the in-sample
performance, as is necessary for most pattern recognition
approaches including neural networks, genetic algorithms
and more generally any of the “soft-computational intel-
ligence” methods [16].

2 Fundamental symmetry principles

Consider a time series for the price S of an asset. It
is defined as a sequence of N + 1 values of the price
S(t0), S(t1), . . . , S(tN ), given for N + 1 equidistant suc-
cessive moments of time t = tj , where j = 0, 1, 2 . . .N .
Our aim is to unravel indicators, i.e. departure from ran-
domness, for the level of the price S(tN + ∆t) at a later
time t = tN +∆t, that are compatible with the following
five general properties.

– Prices should remain positive, S > 0, and their the-
oretical description should be invariant with respect
to a change of units: the number describing the value
of a stock changes when expressing it in US dollar or
in Euros, but the stock value remains what it is. The
detection of a price pattern and a forecast must thus
remain invariant with respect to such changes. Within
the efficient market hypothesis, this requirement elim-
inates Bachelier’s model of the random walk of prices
and replaces it by the random walk of the logarithm
of prices [13]. The model of a random walk of the log-
arithm of the price has, by definition, the symmetry
of translational invariance of returns, which in turn is
equivalent to the symmetry of scaling invariance of the
price: the multiplication of all prices by the same fac-
tor does not change their return. Such scale invariance
symmetry underlies many natural phenomena and is a
strong constraint for theoretical construction [17].

– The theory should be invariant with respect to a
change of time unit.

– A sensible theory of prices should not lead to zeros,
poles or divergences in finite time, as prices and values
are finite.

– Patterns and their associated forecast should be de-
fined in probabilistic terms, allowing for multiple sce-
narii evolving from the same past evolution; proba-

bilities for different scenarii should be expressed only
through historical data, and in the form constrained
by the above mentioned demands on the price. Deeply
embedded in our approach is the view of the future
as a set of potentially acceptable trajectories that can
branch and bifurcate at special times. At certain times,
only one main trajectory extrapolates with high prob-
ability from the past making the future depend almost
deterministically (albeit possibly in a nonlinear and
chaotic manner) on the past. At other times, the fu-
ture is much less certain with multiple almost equiva-
lent choices. In this case, we return to an almost ran-
dom walk picture. The existence of a unique future
must not be taken as the signature of a single dynam-
ical system but as the collapse of the large distribu-
tion of probabilities. This is the concept learned for
instance from the famous Polya Urn problem in which
the historical trajectory appears to converge to a cer-
tain outcome, which is however solely controlled by the
accumulation of purely random choices; a different out-
come might have been selected by history with equal
probability [18]. We propose that it is fundamental to
view any forecasting program as essentially a quantifi-
cation of probabilities for possible competing scenarii.
This view has been vividly emphasized by Asimov in
his famous Science-Fiction “Foundation” series [19].

– We restrict the theoretical formulation to the case
where, in absence of the fundamental equations for
price dynamics and other knowledge, the future values
of the price are constrained only by the past values.
In order to reduce substantially the class of possible
scenarii, we propose to express this condition in a way
that makes apparent a deep symmetry between time
evolution and functional mapping. We will explain be-
low how this theoretical program can be formalized by
the symmetry of functional self-similarity [20].

Our approach can be thought of as a search for a non-
autonomous dynamical system, where the law of motion
changes with time and its functional form remains un-
known. Such a dynamical system is not self-similar in real
time, does not have a single dynamical representation, but
can be characterized by a functional self-similarity [20].
We do not assume that the basic laws which govern mar-
ket evolution should remain the same in the future as they
were in the past, although they will be obtained from
the system’s past. In our approach, they are prescribed
to evolve with time, due to the assimilation of new infor-
mation about the market. One can also think about a win-
dow of forecasting detected in the market evolution as a
spontaneous breaking of continuous translational time in-
variance (the random walk reference being translationally
time invariant in its increments), occurring whenever it is
dictated by relative probabilities of the evolution patterns
with and without explicit violation of this symmetry.

In addition to these five natural requested properties,
we add the concept that

– deviations from the random walk hypothesis are quan-
tified by measurements of the price velocity v and of
the price acceleration g.
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This additional ingredient is motivated by the follow-
ing considerations.

1. First, as we recalled in the introduction, most techni-
cal trading systems attempt to measure trends and/or
change of trends in one way or another. We thus adopt
the pragmatic point of view that decades of empirical
research by practitioners has unraveled indicators of
potential value that may capture useful information.

2. A complementary view point is that the market is self-
organized by the action of all traders, many of whom
use technical analysis to guide their investment deci-
sions. It thus makes good sense to use indicators that
are a decisive part of the creation of the very struc-
ture of the market that one tries to detect and from
which one would like to forecast. This is in spirit sim-
ilar to the approach advocated by models of the stock
markets viewed as complex self-organized adaptive sys-
tems [12].

3. Another argument is that a constant trend in the log-
arithm of the price simply defines a fixed return rate,
which in economic theory can be interpreted as the
risk-free interest rate plus the risk premium paid for
being invested in the market. The velocity is thus sim-
ilar to a risk-adjusted return, a fundamental quantity
in Portfolio theory and practice. We propose the con-
cept of a “psychological Galilean principle”, according
to which investors perceive so-called “market forces”
only when trends change. We borrow here on the
physiological and psychological evidences [21] that a
constant stimulus is progressively endogeneized and
decreases progressively from the conscious mind. A
variation (acceleration/deceleration) is needed to cre-
ate a new stimulus. Similarly, we argue that investors
are more sensitive, after a while, to change of trends
rather than to the continuation of the trend.

3 Scenarii and probabilities

3.1 Velocity-acceleration parameterization

The first step of our theoretical construction consists in se-
lecting a parametric representation of the past time series.
As we argued above, the information of the past price real-
izations ending at any given time tN (called “the present”)
is encoded by two parameters, the price velocity v(tN ) and
the acceleration g(tN ). The simplest non-trivial use of this
parameterization is to form the second-order regression
polynomial,

S0(t) = A0 +A1t+A2t
2, (2)

where S0(t) is the model price at time t0 ≤ t ≤ tN , with
coefficients A0, A1, A2 adjusted to the real time series
S(t) by a mean-square fit or any other suitable regression
technique. The coefficients A0, A1, A2 are obtained as
the solutions of a system of a linear algebraic equations
derived from the condition of minimal Euclidean distance
between the polynomial (2) and historical prices. It is

clear that A2 is proportional to the price acceleration and
A1 gives the initial price velocity at t = 0. This represen-
tation (2) is reminiscent of the so-called “parabolic curve
pattern” often used in technical analysis (see for instance
http://www.chartpattern.com/paraboliccurve.html).
The parabolic formula follows from an implicit Newto-
nian dynamics. Analogies with classical mechanics are
deeply ingrained within both modern economics and
technical analysis. Absence of fundamental equations
makes the task of building any statistical or quantum
mechanics of market process extremely difficult, if not
impossible. Nevertheless, based on symmetry, we are
able to formulate probabilistic market dynamics, or a
Gibbsian-like statistical market mechanics, by starting
from this Newtonian-like representation (2). As already
mentioned, the expression (2) is a convenient point of
departure but other parameterizations are possible as
long as they capture the two fundamental quantities v
and g.

The representation of the price sequence

S(t0), S(t1), . . . , S(tN )

by (2) filters out the high-frequency variations of the price
around the trend and its variation. This natural filter is
usually performed to get rid as much as possible of the
noise decorating such trend and acceleration. It is impor-
tant to stress that the real price quotes S(ti) carry a lot
of “noise” and not only information. Using a mean-square
fit assumes that the residuals are Gaussian noise and im-
plies that the coefficients A0, A1, A2 are linearly depen-
dent on the quoted prices S(t0), S(t1), . . . , S(tN ). As we
will show, this guarantees scaling invariance of the theory.
For negative accelerations A2 < 0, the model price S0(t)
given by (2) is not positively defined for arbitrarily large
future times, in contradiction with our above requirement.
It is thus forbidden to use it directly for an extrapolation.
However, we will show how it can be exploited extensively
as a source of both qualitative and quantitative informa-
tion about the future evolution of the market. In fact, the
“bare” model price S0(t) can be used for qualitative pre-
dictions of the direction of the price movements, leaving
aside magnitude of the moves.

We rewrite S0 using a dimensionless time, so that it
becomes explicit that S0 remains invariant with respect
to change of time units

S0(T, F ) = A0(1 + T + F−1T 2), (3)

where T is the dimensionless “reduced” time,

T =
A1

A0
t, (4)

whose sign follows that of the velocity A1. The expres-
sion (3) is invariant with respect to a change of time units,
since the coefficients Ap are transformed into k−p Ap un-
der the transformation t→ kt. Due to this invariance, it is
convenient to think of the beginning of the time series T0

as the origin of time T0 = 0 and take the last known time
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(present) TN accordingly. The dimensionless Froude num-
ber F , well-known in hydrodynamics, measures the rel-
ative strength of the price velocity A1 compared to the
price acceleration A2, given the price level A0 attained at
time 0:

F =
A2

1

A2 A0
· (5)

The sign of F is determined uniquely by that of the accel-
erationA2. In the hydrodynamical context, the dimension-
less ratio (5) relates the ratio of inertia to buoyancy forces
and is applicable in particular to homogeneous shallow wa-
ter flow, or two layers flow. Explicitly, in the shallow wa-
ter approximation, the Froude number is F = U2/(gH), in
which U is the characteristic velocity, H the characteristic
fluid depth and g the acceleration due to gravity. Rather
than an analogy with hydrodynamic turbulence [22] con-
trolled by the Reynolds number weighting the nonlinear
convective forces against the viscous forces, this analogy
with gravity-controlled viscousless fluids is very sugges-
tive: for viscousless liquids flowing above obstacles, two
regimes can occur. (i) For Froude numbers remaining al-
ways less than one, the flow is only weakly perturbed by
the obstacle. (ii) When the Froude number reaches one at
some point above the obstacle, a major perturbation of
the flow appears with a so-called hydraulic jump [23]. We
will show below that similar regime transitions occur in
the dynamics of market price as a function of the Froude
number (5). The phenomenology of the market patterns is
however significantly richer due to the importance of the
signs of both A1 and A2.

3.2 Functional self-similarity and probabilistic scenarii

For each present time, we obtain a parabolic parameteri-
zation (3) that provides a robust coarse-grained represen-
tation of the information of past time prices. In principle,
we may use much higher order polynomials or different
nonlinear functions to represent more accurately the many
degrees of freedom of the market price dynamics and then
use these representation to extrapolate into the future. Af-
ter initial optimism, this dynamical system approach [24,
25] does not live up to expectations [26]. In addition, there
are important technical problems in specifying high-order
nonlinearities from noisy stock market data [24].

In contrast, we view the parabolic parameterization (3)
as the unique projection of a large set of possible equiva-
lent trajectories over the learning time interval 0 ≤ T ≤
TN . Only one of them will be selected by the dynamical
evolution in the future. In order to construct this set of
trajectories that allow for multiple scenarii, we view the
parabolic parameterization (3) as the lowest order expan-
sion in the space of functions containing more complicated
functional forms, i.e. scenarii for the future. Our approach
amounts to map the extrapolation in the future onto an
evolution in the space of functions on increasingly com-
plex ‘ ‘approximants” (scenarii) yn(t), which are linked to
each other by the symmetry of functional self-similarity.

This approach is very natural since the future evolution
can always be encoded by some mathematical representa-
tion; the challenge is then to guess how to restrict the set
of such representations to achieve predictability.

The symmetry of functional self-similarity allows us
to reach this goal by the condition that different functions
(scenarii) are not completely independent from each other
but can be seen as constituting a hierarchical construc-
tion or multishell structure, such that the successive lay-
ers (approximations) yn(t), for n = 0, 1, . . . , are viewed as
ordered realizations of a dynamical system evolving with
respect to the approximation number n playing the role of
an effective time in the functional space. The symmetry
of functional self-similarity is expressed mathematically
by self-similar renormalization group equations acting on
the approximants: [20]

yn+m(ϕ) = yn
(
ym(ϕ)

)
, (6)

where all approximations are expressed as a function of
a zeroth-order-approximation, through the relationship
y0(t) ≡ ϕ. In words, this property (6) of functional self-
similarity means that the same functional relationship re-
lates the approximant of order n − 1 to the approximant
of order n as the approximant of order n to the approxi-
mant of order n + 1. The relation (6) expresses that all
approximations are connected by an identical itera-
tion procedure of successive improved approximations.
This property also ensures the fastest convergence crite-
rion [20], i.e. the strongest stability for the selected sce-
narii. Going from the abstract space of approximations to
the real time, we thus obtain a set of self-similar extrap-
olation functions, corresponding to the different possible
future market dynamics.

Using the dimensionless variables T and F and follow-
ing the general procedure of algebraic self-similar boot-
strap [20] recalled in the appendix, we deduce from the
polynomial (3) the three simplest polynomial approxima-
tions

S00 = A0, S01 = A0(1 + T ),

S02 = A0(1 + T + F−1T 2). (7)

They correspond to successive truncations of (3) at in-
creasing orders of the power of T . Implementing the alge-
braic self-similar bootstrap procedure [20] recalled in the
appendix, we obtain two non-trivial approximants, which
give two possible scenarii for the future price evolution:

S1(T ) = A0 exp(T ), (8)

S2(T, F ) = A0 exp

(
T exp

(
T

F

))
· (9)

Since T and F can be of both signs, S1(T ) can be in-
creasing or decreasing and S2(T ) can be in addition non-
monotonous.

These two scenarii-approximants (8, 9) satisfy all sym-
metry demands formulated in Section 2. The approximant
S1 given by (8) is quite special since it possesses the self-
similarity symmetry both in real time T and in the space
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of approximations. Indeed, a time translation leads solely
to a redefinition of A0, while keeping exactly the same
functional form. In contrast, the approximant S2 is not
invariant under a time translation and possesses only
the functional self-similarity (6). It thus corresponds to
a breaking of the time-translation symmetry.

The two scenarii-approximants (8, 9) corresponds to
two different forecasts for the future price evolution. What
is the probability of each scenario? We follow reference [27]
and assume that the most probable scenario corresponds
to the most stable approximant with respect to a change
of the parabolic parameterization (3). In other words, the
stability of each scenario is estimated by calculating the
amplitude of its variation upon a change of the param-
eters of the parabolic parameterization (3). This allows
us to use the concept of a Lyapunov exponent in the
space of approximants. Then, using ideas from dynamical
system theory, we generalize the dynamical Kolmogorov-
Sinai entropy for the finite time behavior of stable as well
as unstable trajectories. In our present context, the gen-
eralized Kolmogorov-Sinai entropy of an approximant is
nothing else but the Lyapunov exponent associated to a
variation of parabolic parameterization (3). As in [27], sta-
tistical physics then teaches us that a probability is ob-
tained by taking the exponential p ∼ e−S of minus the en-
tropy and then normalizing to one. Since the generalized
Kolmogorov-Sinai entropy is nothing else but the entropy
rate, it defines the entropy. Movement along a stable tra-
jectory decreases the entropy counted from the entropy
of the initial state, while the movement along an unsta-
ble trajectory increases the entropy. Probabilities are most
conveniently expressed through the so-called multipliers,
defined as the exponential of the Lyapunov exponents, and
given by the functional derivative

mk =
δ Sk
δ S1

, k = 1, 2. (10)

which yields

m1(T ) = 1;

m2(T, F ) =
(

1 +
T

F

)
exp

[
T

(
1
F
− 1 + exp

(
T

F

))]
.

(11)

The corresponding probabilities p1 and p2 for each sce-
nario are inversely proportional to the multipliers and in
proper normalization can be written as [27]

p1(T, F ) =
1

1 + |m2(T, F )|−1 ,

p2(T, F ) =
|m2(T, F )|−1

1 + |m2(T, F )|−1 · (12)

We define the average of the two scenarii as

S∗(T, F ) = p1(T, F ) S1(T ) + p2(T, F ) S2(T, F ). (13)

Probabilities defined in this way put more weight onto
the trajectories with small multipliers which are the most

stable, while not forbidding completely unstable trajec-
tories with multipliers larger than one. One can imagine
situations where all trajectories are unstable or neutral,
with multiplier equal to or larger than 1. Then, the least
unstable trajectory will receive more weight than the more
unstable ones.

4 Classification of market phases

The classification of market patterns depends on three
parameters:

– the dimensionless time horizon ∆T/TN normalized by
the time interval TN over which the parabolic repre-
sentation is constructed,

– the reduced dimensionless learning period TN itself,
– the Froude number F .

In order to classify the different possible temporal pat-
terns of market prices, one should in principle compare
the forecasted value S∗(TN + ∆T,F ) to the “present”
price approximated by S0(TN , F ), where TN and ∆T are
the dimensionless times obtained from tN and ∆t by the
transformation (4). We propose to use the average scenario
S∗(T, F ) instead of S0(TN , F ) in order to reduce or elim-
inate as much as possible any systematic errors. Indeed,
the use of the same function S∗(T, F ) provides a scheme
for cancellation of errors that would not otherwise occur
if the parabola S0(TN) given by (2) was chosen instead.

A given market pattern is thus determined by the be-
havior of the predicted return

R = ln
(
S∗(TN +∆T,F )

S∗(TN , F )

)
· (14)

We classify the different regimes by looking at the sign
of the return and the transition between two regimes is
quantified by the condition R = 0 which is equivalent to

∆S∗ = S∗(TN +∆T,F )− S∗(TN , F ) = 0. (15)

The number of solutions of equation (15) can be 0, 1, 2
or 3.

The following four combinations of the parameters are
possible and define the following four regimes.

1. “Super-bull” (∆T > 0, F > 0) corresponding to posi-
tive price velocity and positive acceleration; we depict
this regime with the following pictograph c.

2. “Balanced-bull” (∆T > 0, F < 0) corresponding to
positive price velocity and negative acceleration; we
depict this regime with the following pictograph d.

3. “Super-bear” (∆T < 0, F < 0) corresponding to nega-
tive price velocity and negative acceleration; we depict
this regime with the following pictograph e.

4. “Balanced-bear” (∆T < 0, F > 0) corresponding to
negative price velocity and positive acceleration; we
depict this regime with the following pictograph b.
In each case, one will find qualitatively different dia-

grams for the returns. A “Bull” regime of evolution corre-
sponding to R > 0 will intermingle with a “Bear” regime
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corresponding to R < 0 in the phase space of control pa-
rameters in a way peculiar to each of the four cases.

Figures 1–6 present some general statistics obtained
from this classification. We have analyzed daily returns of
twelve data sets comprising some major indices

– the Dow Jones index from Jan. 2, 1970 till Feb. 24,
1998,

– the SP500 index from Jan. 1, 1950 till June 1, 1999,
– the Nasdaq index from Feb. 5, 1971 till May 18, 1999,
– the German DAX index from July 1, 1991 till May 17,

1999,
– the British FTSE index from April 17, 1990 till May

17, 1999, and
– the Japanese Nikkei index from April 16, 1990 till May

17, 1999,

some major bonds

– the thirty year US treasury bond TYX from Oct. 29,
1993 till Aug. 9, 1999,

– the Japanese Government Bond JGB from from Jan.
1, 1992 till March 23, 1999

and some major currencies against the US dollar all from
Jan. 4, 1971 till May 19, 1999,

– the British pound (GBP),
– the Swiss franc (CHF)
– the German mark (DEM),
– the Japanese Yen (JPY).

Each figure in the series 1–6 presents first the time evo-
lution of the price (top). The middle plots represents the
Froude number defined in equation (5) as a function of the
reduced prediction horizon ∆T ≡ (A1/A0)δt, where δt is
fixed equal to 5 days. The four quadrants sampled clock-
wise correspond to the four regimes c, d, e and b defined
above. The bottom plots quantify the relative frequency
of each regime. Specifically, for each regime, we look at
the sign of the return prediction and count the number
of time a given regime with a given return sign has been
predicted. In this way, we define eight patterns of which
six fundamental ones remain to be considered by looking
successively clockwise at the quadrants of the diagram of
the Froude as a function of δT :

– p1 ≡c+: super bull predicting a positive return,
– p2 ≡c−: super bull predicting a negative return (im-

possible)
– p3 ≡ d+: balanced-bull predicting a positive return,
– p4 ≡ d−: balanced-bull predicting a negative return,
– p5 ≡e+: super bear predicting a positive return (im-

possible)
– p6 ≡e−: super bear predicting a negative return,
– p7 ≡ b+: balanced-bear predicting a positive return,
– p8 ≡ b−: balanced-bear predicting a negative return.

Note that p1 ≡c+, p3 ≡ d+, p6 ≡e− and p8 ≡ b− are
trend-following patterns while p2 ≡c−, p4 ≡ d−, p5 ≡
e+ and p7 ≡ b+ are contrarian patterns. Of these four
contrarian patterns, only p4 ≡ d− and p7 ≡ b+ are allowed
within the super-exponential framework. The theory thus

accounts for a natural preferential bias in favor of trend-
following patterns, while contrarian patterns do appear
with non-negligible frequency.

The three dotted, dashed and continuous lines repre-
sent the transition between different signs of predicted re-
turns from the condition (15): above (resp. below) the
dotted line in the second (resp. third) quadrant, the pre-
dicted return is negative. It then turns positive between
the dotted and dashed line, then negative again between
the dashed and the continuous line and positive below
(resp. above) the continuous line in the second (resp.
third) quadrant.

Since market noise is an important issue, we also inves-
tigate how robust is a given pattern with respect to the
amplitude of the predicted return: we count only those
patterns with a predicted amplitude of the price varia-
tions ∆S∗ defined by (15) larger than a threshold defined
as a multiple of the standard deviation of the fit of the
price by the parabola S0(TN) given by (2) in the training
window of length tN . The result is presented in the plots
at the bottom of Figures 1–6 showing the number of real-
izations of each of the six relevant patterns as a function
of the threshold. When the threshold increases, some pre-
dictions are left over since their predicted price variation
is below the threshold: we thus expect that the number of
realizations of each pattern should decays as the threshold
increases. We observe that the relative frequency of a given
pattern decays typically exponentially with the threshold,
in agreement with the approximate exponential charac-
ter of the distribution of daily price variations [28] and
of drawdowns [29,30]. Furthermore, among all patterns,
the balanced-bull predicting negative returns (p4 ≡ d−)
and balanced-bear predicting positive returns occur less
frequently than the other patterns, showing a preponder-
ance for trend-following patterns.

4.1 Super-bull c (∆T > 0, F > 0)

We start by a word of caution as this scenario is rather un-
stable. Indeed, in this case of positive dimensionless time
and Froude number, the multiplier m2(T, F ) is always
larger than one, which means that the second scenario
S2(T, F ) is always unstable. When the Froude number
decreases, both m2(T, F ) and S2(T, F ) grow larger and
larger, becoming very large for sufficiently small F . How-
ever, the mathematical divergence only occurs at infinite
times. Strictly speaking, this does not violate the principle
requested by our theory that price remains finite; however,
in practice, it may lead to instabilities. The formal defi-
nition of the finite average S∗ still holds mathematically
speaking but the accuracy may be problematic. Limiting
the theory to a second-order regression (i.e. solely in terms
of the velocity and the acceleration) is a limiting feature
of our present approach and should be improved by con-
sidering higher-order approximants.

In the super-bull case, the prediction is that returns are
expected to be always positive corresponding to pattern
p1 ≡c+.

Figure 7 presents statistical tests of this prediction on
the twelve data sets shown in Figures 1–6. In these plots,
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Fig. 1. US dollar in German mark and Japanese Yen from Jan. 4, 1971 till May 19, 1999. The plots at the top show the time
series of the prices. The middle plots show the Froude number defined in equation (5) as a function of the reduced prediction
horizon ∆T ≡ (A1/A0)δt where δt is fixed equal to 5 days. The plots at the bottom show the number of realizations of each
of the six relevant patterns as a function of the threshold Rth for the predicted amplitude of the price move. The symbols
are p1 ≡c+ (x), p3 ≡ d+ (+), p4 ≡ d− (o), p6 ≡e− (.), p7 ≡ b+ (square) and p8 ≡ b− (diamond). The dotted, dashed and
continuous lines delineate domains of different predicted return signs (see text).

0 1000 2000 3000 4000
1

1.5

2

2.5

3
GBP

G
B

P
 in

de
x

time (days)

−0.1 −0.05 0 0.05 0.1
−1

−0.5

0

0.5

1

F
ro

ud
e 

nu
m

be
r 

F

∆ T

0 0.5 1 1.5 2
10

−4

10
−2

10
0

F
re

qu
en

cy
 o

f p
at

te
rn

 P
i

R
th

0 1000 2000 3000 4000
1

2

3

4

5
CHF

C
H

F
 in

de
x

time (days)

−0.1 −0.05 0 0.05 0.1
−1

−0.5

0

0.5

1

F
ro

ud
e 

nu
m

be
r 

F

∆ T

0 0.5 1 1.5 2
10

−4

10
−2

10
0

F
re

qu
en

cy
 o

f p
at

te
rn

 P
i

R
th

Fig. 2. Same as Figure 1 for the British pound and the Swiss franc.
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Fig. 3. Same as Figure 1 for the thirty year US treasury bond TYX from Oct. 29, 1993 till Aug. 9, 1999, and the Japanese
Government Bond JGB from from Jan. 1, 1992 till March 23, 1999.
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Fig. 4. Same as Figure 1 for the SP500 index from Jan. 1, 1950 till June 1, 1999, and the Dow Jones index from Jan. 2, 1970
till Feb. 24, 1998.
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Fig. 5. Same as Figure 1 for the Nasdaq index from Feb. 5, 1971 till May 18, 1999, and the Japanese Nikkei index from April
16, 1990 till May 17, 1999.
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Fig. 6. Same as Figure 1 for the British FTSE index from April 17, 1990 till May 17, 1999, and the German DAX index from
July 1, 1991 till May 17, 1999.
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Fig. 7. Super bull case c: The
y-axis gives the fraction of suc-
cessful predictions of the sign
of return as a function of a
threshold, defined such that a
prediction is taken into account
only if the predicted amplitude
is larger that the threshold pa-
rameter times the standard de-
viation of the parabolic fit in
the learning window. Coin toss-
ing gives a fraction of success-
ful predictions equal on aver-
age to 0.5. Here, we compare
three strategies: (i) our theory
(average approximant S∗) rep-
resented by crosses, (ii) a trend
following strategy corresponding
to the linear approximation of
S1 represented by open squares
and (iii) the bare parabolic pa-
rameterization (3) represented
by open circles. The continu-
ous (resp. dotted) line corre-
spond to the 90% (resp. 99%)
confidence level, i.e. 100 (resp.
10) out of 1 000 surrogate data
sets would give a fraction of
successful prediction outside the
domain delimited by the two
continuous (resp. dotted) lines.
These confidence limits apply
strictly only to the average ap-
proximant S∗ which has been
applied to 1 000 surrogate time
series obtained by reshuffling
at random the daily returns.
Similar confidence intervals can
be constructed by applying the
trend following (ii) and the bare
parabolic (iii) strategies to these
1 000 surrogate time series but
this would confuse the graphic
representation. The same analy-
sis is performed for each of the
twelve assets presented in Fig-
ures 1–6. For further details on
how the figures are constructed,
see the main text.
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the learning interval is fixed to 15 days and the prediction
horizon is fixed to 5 days. For each asset, two plots are
presented. The top one shows the normalized number of
successes for the prediction of the sign of the return as a
function of threshold, where the threshold is defined as in
Figures 1–6. A normalized success close to 0.5 corresponds
to a 50% probability of being right or wrong and is thus
undistinguishable from chance. The issue however is more
subtle because the existence of trends in certain markets
such as in indices biases this estimation. To account for
such bias and others stemming from specific structures of
the distributions of daily returns in the raw time series,
we have generated 1 000 surrogate times series for each of
the 12 assets by reshuffling at random the daily returns.
On each of the 1 000 surrogate time series, we have ap-
plied our procedure and have measured the success rate
for the prediction of the average approximant as a func-
tion of threshold, following the same methodology as for
each initial time series. This allows us to plot the 90%
(continuous line) and 99% (dotted line) confidence levels,
defined by the fact that 900 (resp. 990) among the 1 000
surrogate times series gave a success rate in the interior
of the domain bounded by the continuous (resp. dotted)
line. Note that these confidence levels strictly speaking
only apply to the predictive skill of the strategy using
the average approximants. Somewhat different confidence
levels are expected when applying other strategies. We
choose to represent only the confidence levels relevant to
the average approximant.

In addition, since our framework incorporate both a
trend-following component (quantified by the velocity)
and contrarian ingredient (quantified by the acceleration),
it is instructive to compare its performance with two
strategies.

1. The first one is a simple trend-following strategy and
consists of taking the linear approximationA0(1+T ) =
A0 +A1t of the simple exponential approximant S1 as
the best prediction. This strategy is independent of
the acceleration A2 and is thus a pure trend-following
strategy: it rises (resp. decreases) if the velocity A1 is
positive (resp. negative).

2. The second strategy consists in using the bare parabo-
lic parameterization (3), which represents the best rep-
resentation of the local market behavior incorporating
the interplay between trend and acceleration without
any theoretical improvement.

In this way, we can really quantify the value, if any,
brought by our theory, compared to more traditional tech-
nical analysis methods.

The bottom plot for each asset in Figure 7 gives the
normalized number of times the pattern has been found
as a function of the threshold, this for the three different
strategies, namely our best prediction based on the av-
erage S∗ over the two approximants, the trend-following
strategy (linear approximation of S1) and the parabolic
parameterization (3). This plot is important in order to
assess the quantitative importance of a given success rate
in terms of its frequency. Consider for instance the Swiss
franc CHF. We observe that both the trend and aver-

age approximant exhibit statistically significant predictive
power with two notable peaks as a function of thresh-
old, approximately at 0.5 and 1.2, with a success rate
approaching 60% in the first case and overpassing 80%
in the second case. The apparent overwhelming superior-
ity of the second peak is moderated by the fact that it
concerns about 1/10th of the cases covered by the first
peak for the average approximant and about 1/100th of
the case covered by the first peak for the trend-following
strategy. Their impact for a successive investment strat-
egy will thus be an interplay between their success rate
and the occurrence rate.

The following overall picture emerges from examina-
tion of the twelve markets shown in Figure 7: taken to-
gether, we find that the trend-following and the average
approximant strategies exhibit statistically significant suc-
cess rates, while the parabolic strategy is not different
from random coin tossing. While the trend-following strat-
egy seems to exhibit sometimes a better performance than
the average approximant, it is much less robust in terms
of its number of occurrences.

4.2 Balanced-bull market d (∆T > 0, F < 0)

In the balanced-bull regime, both positive and negative re-
turns can be predicted. A “phase diagram”, defined in the
parameter space (∆T/TN , |F |) with TN = 1 and shown
in Figure 8, summarizes the different possible cases. From
the condition of positive prices S0 > 0, we find that F
must satisfy the condition

|F | > F0 =
T 2
N

1 + TN
·

There are three branches that solve equation (15):

F1(∆T ), F2(∆T ) and F3(∆T ),
with |F1(∆T )| < |F2(∆T )| < |F3(∆T )| .

These curves are shown in Figure 8 as dotted-dashed,
dashed and continuous lines respectively. Below the curve
|F1(∆T )|, R is always negative, corresponding to a trend-
reversing forecast for all possible time horizons, while
R becomes positive above the curve, corresponding to
the trend-following forecast for large |F |. There is also
a “tongue”-shaped region of trend-reversing regime, en-
circled by the curves |F2(∆T )| and |F3(∆T )|. We are in-
clined to interpret this region as an artifact appearing as
a remnant of the non-renormalized phase-equilibria curve.

It is instructive to calculate the line delineating the
change of sign of the return, which would follow directly
from the non-renormalized price S0, given by the condition
S0(TN +∆T,F )− S0(TN , F ) = 0, and compare it to the
phase-equilibria for the renormalized price. This line is
shown in Figure 8 as the long-dashed line and is referred
to as “regression”.

These results can be understood intuitively as follows.
A small absolute value of the Froude number implies
a large (negative) acceleration, hence the possibility for
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Fig. 8. “Phase diagram” for the balanced-bull regime d, de-
fined in the parameter space (∆T/TN , |F |) with TN = 1, de-
lineating the regions of positive and negative returns. The
boundaries F1(∆T ), F2(∆T ) and F3(∆T ) are shown as dotted-
dashed, dashed and continuous lines respectively. The long-
dashed line indicated as “regression” in the figure corresponds
to the solution of S0(TN +∆T,F )− S0(TN , F ) = 0.

the price to change course over the prediction horizon. We
thus expect and observe that the predicted return is nega-
tive below a transition line, both for the non-renormalized
price parabola S0 and for our prediction S∗. We observe
that the effect of the functional renormalization is to shift
significantly the transition line towards lower |F |, i.e.
larger negative accelerations. This can be seen to result
in part from the stabilization effect of the positivity prop-
erty of super-exponentials.

We note that these results are robust with respect to a
change of the dimensionless learning period TN , which has
only a marginal influence only on the quantitative shape
of the phase diagram but not on its qualitative properties.
In fact, the topological properties of the transition lines
never change when varying TN .

Figure 9 shows the predicted return defined by equa-
tion (14) as a function of the ratio ∆T/TN of the pre-
diction horizon over the learning interval for several val-
ues of the Froude number. The three boundaries F1(∆T ),
F2(∆T ) and F3(∆T ) shown in Figure 8 can be deduced
qualitatively from this Figure 9 from the three regimes
where R is always positive (large |F |), R changes signs
with a cusp (intermediate |F |) and is always negative
(small |F |).

These predictions are tested in Figure 10 which pre-
sents statistical tests on the twelve data sets shown in
Figures 1–6. The same parameters as for the super bull
regime tested in Figure 7 have been used (the learning
interval is fixed to 15 days and the prediction horizon is
fixed to 5 days).

Pattern 3 corresponding to the trend-following pat-
tern d+ is first shown. We observe that the parabolic
prediction (open circles) and the average approximant
(crosses) strategies exhibit statistically significant success

Fig. 9. Predicted return R in the balanced-bull regime d de-
fined by equation (14) as a function of the ratio ∆T/TN of the
prediction horizon over the learning interval for several values
of the Froude number.

rates, while the trend-following strategy is not different
from random coin tossing. While the parabolic prediction
strategy seems to exhibit sometimes a better performance
than the average approximant, it is much less robust in
terms of its number of occurrences.

For pattern 4 corresponding to the contrarian pattern
d−, we show only two strategies, the average approximant
(crosses) and the bare parabolic parameterization (3) rep-
resented by open circles, since the trend-following strat-
egy never predicts the pattern d− by definition. The av-
erage approximant clearly exhibits statistically significant
success rates for most of the assets, while the parabolic
strategy is not different from random coin tossing in this
explored threshold range.

4.3 Super-bear e (∆T < 0, F < 0)

We start by a word of caution as this scenario is rather
unstable. In this case of negative dimensionless time and
Froude number, the multiplier m2(T, F ) and its associ-
ated scenario S2(T, F ) both go to very small values with
decreasing |F | in the limit of small |F |. The average ap-
proximant S∗ goes to zero as well. The large variations are
symptomatic of potential instabilities. Limiting the theory
to a second-order regression (i.e. solely in terms of the ve-
locity and the acceleration) is a limiting feature of our
present approach for the super-bear (as it was the case for
the super-bear discussed above) and should be improved
by considering higher-order approximants.

In the super-bear case, the prediction is that returns
are expected to be always negative corresponding to pat-
tern p6 ≡e−. Pattern p7 ≡e+ is thus impossible within
the present framework limited to a characterization of
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Fig. 10. Balanced bull case
d: Comparative statistical tests
of the predictions of our the-
ory (average approximant S∗)
represented by crosses, a trend
following strategy (linear ap-
proximation of S1) represented
by open squares and the bare
parabolic parameterization (3)
represented by open circles, for
the twelve assets presented in
Figures 1–6. The predictions of
positive d+ and negative d− re-
turns are represented separately:
P3(Rth) (resp. P4(Rth)) gives
the fraction of successful predic-
tion of the sign of the return for
a positive (resp. negative) pre-
dicted return (see the definitions
of Sect. 4). The same parame-
ters as for the super bull regime
have been used (learning inter-
val is fixed to 15 days and the
prediction horizon is fixed to 5
days). The same quantities as in
Figure 7 are represented. For in-
formation on how the figures are
constructed, see the main text.
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(d) Fig. 10. (Continued.)
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Fig. 11. Super-bear e: compar-
ative statistical tests of the pre-
dictions of our theory (average
approximant S∗) represented by
crosses, a trend following strat-
egy (linear approximation of S1)
represented by open squares and
the bare parabolic parameteri-
zation (3) represented by open
circles, for the twelve assets pre-
sented in Figures 1–6. P6(Rth)
gives the fraction of successful
predictions of the sign of the
return for a negative predicted
return (see the definitions of
Sect. 4). For information on how
the figures are constructed, see
the main text.
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Fig. 12. “Phase diagram” of the balanced-bear regime b, de-
fined in the parameter space (∆T/TN , |F |) with TN = 1, delin-
eating the regions of positive and negative returns. The bound-
aries F1(∆T ), F2(∆T ) and F3(∆T ) are shown as dashed, con-
tinuous and dotted lines respectively. The dotted-dashed line
indicated as “regression” on the figure corresponds to the so-
lution of S0(TN +∆T,F )− S0(TN , F ) = 0.

the market price evolution solely in terms of a velocity
and an acceleration.

Figure 11 presents the same statistical tests as in Fig-
ure 7 of this prediction on the twelve data sets shown in
Figures 1–6. In these plots, the learning interval is fixed
to 15 days and the prediction horizon is fixed to 5 days.
As for the super-bull case, we observe that the trend-
following and the average approximant strategies exhibit
statistically significant success rates, while the parabolic
strategy is not different from random coin tossing. While
the trend-following strategy seems to exhibit sometimes
a better performance than the average approximant, it is
much less robust in terms of its number of occurrences.

4.4 Balanced-bear b (∆T < 0, F > 0)

In the balanced-bear regime as for the previously discussed
balanced-bull regime, both positive and negative returns
can be predicted. A “phase diagram”, defined in the pa-
rameter space (∆T/TN , |F |) with TN = 1 and shown in
Figure 12, summarizes the different possible cases.

There are three branches that solve equation (15):
F1(∆T ), F2(∆T ) and F3(∆T ), with F1(∆T ) < F2(∆T ) <
F3(∆T ). The phase diagram shown in Figure 12 looks
very similar to the balanced-bull case, with the region
of positive (resp. negative) returns below (resp. above)
the F1(∆T ) curve. There is again a “tongue”-shaped re-
gion of trend-reversing regime, encircled by the curves
F2(∆T ) and F3(∆T ). We propose to interpret this re-
gion as an artifact appearing as a remnant of the non-

Fig. 13. Predicted return R of the balanced-bear regime b,
defined by equation (14), as a function of the ratio ∆T/TN
of the prediction horizon over the learning interval for several
values of the Froude number.

renormalized phase-equilibria curve. We show in addi-
tion the line of change of sign for the return predicted
by the non-renormalized price S0, given by the condition
S0(TN +∆T,F )− S0(TN , F ) = 0,.

For small F , the average approximant S∗ as well as
the non-renormalized parabolic parameterization S0 both
predict a trend-reversing regime. The interpretation is the
following: a small Froude number corresponds to a large
positive acceleration, which has thus the capacity of re-
versing the negative trend over the prediction horizon. The
main effect of our renormalization procedure is to shift the
transition line downwards to smaller Froude numbers, i.e.
to larger accelerations, a result that derives from the stabi-
lization of our procedure. This exemplifies the non-trivial
nature of the scenarii selected by the self-similar functional
renormalization group approach. For larger F , i.e. smaller
accelerations, the trend-following forecast takes over.

The reduced dimensionless learning period TN is again
a marginally relevant parameter, i.e. it influences the
shape of phase diagram only quantitatively. The shape
and topology of the phase equilibria curves are similar for
all TN .

It is interesting to notice that our classification of pos-
sible market regimes exhibit a distinct asymmetry between
bullish and bearish phases: a balanced-bull market and
a balanced-bear market will not evolve symmetrically in
time. Most significantly, the line of phase equilibria for
the balanced-bear case saturates at large ∆T/TN at some
constant value which is function only of TN , while for the
balanced-bull case there is no such saturation.

Figure 13 shows the predicted return R defined by
equation (14) as a function of the ratio ∆T/TN of
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Fig. 14. Balanced bear case
b: Comparative statistical tests
of the predictions of our the-
ory (average approximant S∗)
represented by crosses, a trend
following strategy (linear ap-
proximation of S1) represented
by open squares and the bare
parabolic parameterization (3)
represented by open circles,
for the twelve assets presented
in Figures 1–6. The predic-
tions of positive b+ (p7) and
negative b− (p8) returns are
represented separately: P7(Rth)
(resp. P8(Rth)) gives the frac-
tion of successful prediction of
the sign of the return for a pos-
itive (resp. negative) predicted
return (see the definitions of
Sect. 4). The same parameters
as for the super bull regime have
been used (learning interval is
fixed to 15 days and the predic-
tion horizon is fixed to 5 days).
The same quantities as in Fig-
ure 7 are represented. For infor-
mation on how the figures are
constructed, see the main text.
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(d) Fig. 14. (Continued.)
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the prediction horizon over the learning interval for sev-
eral values of the Froude number. The three boundaries
F1(∆T ), F2(∆T ) and F3(∆T ) shown in Figure 12 can be
deduced qualitatively from this Figure 13 from the three
regimes where R is always positive (small F ), R changes
signs with a cusp (intermediate F ) and is always negative
(large F ).

These predictions are tested in Figure 14 which pre-
sents statistical tests on the twelve data sets shown in
Figures 1–6. The same parameters as for the super bull
regime tested in Figure 7 have been used (the learning
interval is fixed to 15 days and the prediction horizon is
fixed to 5 days).

Pattern 7 corresponding to the trend-reversal or con-
trarian pattern b+ is first shown. Only two strategies are
shown, namely the average approximant (crosses) and the
bare parabolic parameterization (3) represented by open
circles, since the trend-following strategy never predicts
the pattern b+ by definition. The average approximant
clearly exhibits statistically significant success rates for
most of the assets, while the parabolic strategy is not dif-
ferent from random coin tossing.

For pattern 8 corresponding to the trend-following case
b−, we observe that the parabolic prediction (open cir-
cles) and the average approximant (crosses) strategies
exhibit statistically significant success rates, while the
trend-following strategy is not different from random coin
tossing. While the parabolic prediction strategy seems to
exhibit sometimes a better performance than the average
approximant, it is much less robust in terms of its number
of occurrences.

5 Discussion and conclusion

In summary, we have presented a general framework that
characterizes different market phases viewed as local de-
fects of the overall time-translational invariance structure
of the random walk reference. This framework is based on
the price velocity v and acceleration g parameters and on
a set of symmetry principles, especially self-similarity of
the prices and in the abstract space of functional scenarii.

We have tested the quality of the predictions provided
by our theory, giving a strategy that we have called “av-
erage approximant”, by measuring the success rate of the
prediction of the sign of the return on twelve different as-
sets and have compared the quality of these predictions
to those from traditional technical analysis including a
trend-following and a contrarian strategy. The statistical
significance of our results have been assessed by generat-
ing 1 000 surrogate time series for each of the twelve as-
sets with exactly the same statistical properties except for
possible time-dependence, by reshuffling the daily returns.
The application of the three forecasting strategies (aver-
age approximant, trend following and contrarian) to these
1 000 surrogate times series shows that the predictive skill
of the average approximant strategy has overall a high de-
gree of statistical significance. Furthermore, we find that
it is robust over all phases of the market. This is in con-
trast with the trend-following strategy which is found to

perform well only during strong accelerating trends (cat-
egorized as “super-bull” and “super-bear”). This is also
in contrast with the contrarian strategy which is found to
perform well only during decelerating trends (categorized
as “balanced-bull” and “balanced-bear”). Our probabilis-
tic framework thus provides an automatic scheme for de-
tecting and selecting what type of strategy is the best per-
former. This optimization relies on the calculation of the
stability of the different scenarii: the most stable one is the
most probable and controls the strategy (trend-following
or contrarian) that is best adapted to a particular phase
of the market. We stress again that, in all our empirical
tests, future data has not been used in the estimation of
the quadratic approximations and in the predictive scheme
in any of the times series. The tests that we have presented
have been performed by simulating as closely as possible
a real-time daily forecasting strategy.

The present framework can be seen as a generalization
of the standard “Newtonian” deterministic technical anal-
ysis to a Gibbsian (statistical) mechanics, in other words,
to a probabilistic view of the future. The appearance of
probabilities has to be emphasized in contrast to a deter-
ministic view of future. This probabilistic framework cap-
tures the inhomogeneity of market participants who can
produce different forecasts based on equivalent informa-
tion. It may thus provide a forum for reconciliation of the
on-going feud between “efficient marketers” and “techni-
cians”, by showing that the random walk paradigm and a
deterministic view of the world are different limiting cases
of much broader and complex market evolutions.

We are grateful to D. Darcet, A. Johansen and V.I. Yukalov
for stimulating discussions.

Appendix: Statistical self-similar analysis

In this appendix, we recall the theory that leads to the
results quoted in Section 3.2. We look at the prediction of
the future time evolution of the market as a specification
of an a priori unknown function f(x) of a real variable x
representing the fundamental market trajectory as a func-
tion of physical time or the dimensionless time. We keep
the notation f(x) to be general.

The first step of the theory consists in recognizing
that, in the neighborhood of the present time x = x0,
one can define a series of approximations pk(x, x0) (also
called asymptotic expansions) to this function with k =
0, 1, 2, . . . :

f(x) ' pk(x, x0), x→ x0. (16)

The number k indexes the order of the approximations
obtained according to some construction scheme, which
can be convergent or divergent (i.e. asymptotic).

Following the algebraic self-similar renormalization
procedure [20], one introduces the algebraic transform de-
fined by

Pk(x, s, x0) = xspk(x, x0), (17)
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where the exponent s is yet unknown, and later will play
the role of a control function. The inverse transform to
that in equation (17) is

pk(x, x0) = x−sPk(x, s, x0). (18)

The introduction of the transform (17) in terms of power
law products keeps the symmetry requirements discussed
in the main text and offers an additional degree of free-
dom in the space of functions to impose positivity and
get of rid of infinities (poles). Rather than constructing a
trajectory in the space of the initial approximations, the
idea behind the introduction of the transform (17) is to
deform smoothly the initial functional space of the approx-
imations pk(x, x0) in order to obtain a faster and better
controlled convergence in the space of the modified func-
tions Pk(x, s, x0). This convergence can then be mapped
back to get the relevant estimations and predictions.

Technically, the procedure is as follows [20]. One first
defines an expansion function x = x(ϕ, s, x0) by the equa-
tion

P0(x, s, x0) = ϕ, x = x(ϕ, s, x0), (19)

where P0 is the first available term from the sequence
{Pk}. This allows one to transform the problem of search-
ing for an approximation as a function of time into the
problem of the dependence of the time as a function of
the first approximant. This type of transformation is well-
known and a closely related one is for instance used in hy-
drodynamics under the name of the hodograph transform
to solve very non-linear flow problem [31] that are oth-
erwise out of reach of standard functional methods. The
variable ϕ represents the running and continuous interpo-
lation between successive approximations in the space of
functions.

Once this change of variable is performed, all functions
can be expressed in terms of this new variable ϕ, which
defines

yk(ϕ, s, x0) = Pk(x(ϕ, s, x0), s, x0). (20)

The transformation inverse to equation (20) reads

Pk(x, s, x0) = yk(P0(x, s, x0), s, x0). (21)

The family of endomorphisms, {yk}, allows to define the
“velocity” field

vk(ϕ, s, x0) = yk+1(ϕ, s, x0)− yk(ϕ, s, x0), (22)

corresponding to the change of the approximants per unit
order of the approximations. The trajectory of the se-
quence {yk} is, by definitions (20) and (21), bijective to
the approximation sequence {Pk}.

From the knowledge of the velocity as a function of
the variable ϕ, one defines an effective time increment τ
for the evolution of the dynamical system in the space of
functions: during that time increment τ , Pk is transformed
into Pk+1. This provides the evolution integral∫ P∗k+1

Pk

dϕ
vk(ϕ, s, x0)

= τ, (23)

in which Pk = Pk(x, s, x0) is any given term from the
approximation sequence {Pk}; P ∗k+1 = P ∗k+1(x, s, τ, x0) is
the best guess obtained in this approach for the fixed point
of the approximation series. τ is an effective minimal time
necessary for reaching this fixed point.

Recall that we started with a sequence {pk} of asymp-
totic expansions of the function f(x). We then passed to
the sequence {Pk} by means of the algebraic transforma-
tion (17). We now have to return back by employing the
inverse transformation (18). To this end, we set

F ∗k (x, s, τ, x0) = x−sP ∗k (x, s, τ, x0). (24)

The quantities s and τ are the control functions guar-
antying the stability of the method, that is, the conver-
gence of the procedure. These functions are to be defined
by the stability conditions, such as the minimum of mul-
tiplier moduli, together with additional constraints, like,
e.g., boundary conditions. Let us assume that we find from
such conditions s = sk and τ = τk. Substituting these into
equation (24), we obtain the self-similar approximation

f∗k (x, x0) = F ∗k (x, sk, τk, x0) (25)

for the function f(x).
Let us now apply this theory to the polynomial per-

turbative series

pk(x) =
k∑
n=0

anx
n, a0 6= 0, (26)

containing integer powers of x as in (2). Then, the alge-
braic transform (17) reads

Pk(x, s) =
k∑
n=0

anx
n+s. (27)

The transform (27) corresponds to an effective higher
perturbation order k + s, as compared to the initial se-
ries (26) of order k. Equation (19) for the expansion func-
tion x(ϕ, s) now reads

P0(x, s) = a0x
s = ϕ, (28)

which yields

x(ϕ, s) =
(
ϕ

a0

)1/s

· (29)

The series of functions (20) become

yk(ϕ, s) =
k∑
n=0

an

(
ϕ

a0

)n/s+1

. (30)

The velocity field (22) reads

vk(ϕ, s) = ak

(
ϕ

a0

)1+k/s

· (31)
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With the optimization condition τ = 1 corresponding to
the requirement that the fixed point is reached under a
single iteration, the evolution integral (23) gives

P ∗k (x, s) = Pk−1(x, s)

[
1− kak

sa
1+k/s
0

P
k/s
k−1(x, s)

]−s/k
·

(32)

The stabilizer sk(x) is determined from the minimization
of the multiplier defined by

µk(ϕ, s) =
∂

∂ϕ
yk(ϕ, s), (33)

which is then transformed into its image

mk(x, s) = µk(F0(x, s), s) (34)

in terms of the variable x, This yields

mk(x, s) =
k∑
n=0

an
a0

(
1 +

n

s

)
xn · (35)

The control function s = sk(x) is defined by the equation∣∣mk

(
x, sk(x)

)∣∣ = min
s
|mk(x, s)| . (36)

Because the minimization of the multiplier |mk(x, s)|
makes the trajectory in the space of functions more sta-
ble, the role of the control function sk(x) is now justified
as a stabilizing tool. This provides finally the self similar
approximation (25),

f∗k (x) = pk−1(x)

[
1− kak

sa
1+k/s
0

xkp
k/s
k−1(x)

]−s/k
, (37)

where s = sk(x) is the solution of (36).
An interesting case occurs when the limit s → ∞ is

taken for which the approximants will be shown below to
be super-exponentials, i.e. an exponential of an exponen-
tial of an exponential... This limit s → ∞ often realizes
the minimum of the multipliers (hence ensures the opti-
mal convergence and stability of the procedure) and also
corresponds to the maximum effective order of the pertur-
bation expansion (27).

Note that this limit s → ∞ does not always optimize
the renormalization procedure at every step, i.e. does not
always minimize the local multipliers; however, we find
that the solutions are closed to this limit. In addition, we
emphasize that the fastest convergence of the procedure
at each step does not guarantee that the final expression
will converge to the true fixed point. Quite often, one can
find already at the very first steps of the renormalization
that some multipliers vanish, which mathematically would
mean an infinite rate of convergence, while in practice this
makes the procedure trapped close to a wrong fixed point.
It is better to look at the optimal stability criterion from
a global perspective, i.e. over several steps of the renor-
malization. The particularly interesting properties shared

by the solutions of the limit s→∞ are the following:

1. the super-exponentials are obtained under the condi-
tion where as many steps as possible are performed
towards the sought fixed point. Furthermore, the to-
tal exponentialization is the strongest possible way to
renormalize initial power series.

2. The explicit self-similarity of the final super-exponen-
tial expressions and their iterative nature allows us
to look at them in turn as a sequence of approxima-
tions to the fixed point and compare their quality with
respect to the lowest-order exponential by means of
the “global” multipliers. In general, super-exponentials
surround the fixed point, but do not hit it precisely.

3. For massive numerical calculations it is convenient to
have fixed and reasonable functional forms for the ap-
proximants rather than define them at each step, as
step-by-step renormalizatiion would require.

Taking this limit s→∞ in (37) gives

f∗k (x) = pk−1(x) exp
(
ak
a0
xk
)
· (38)

Repeating the renormalization, we get

f∗∗k (x) = pk−2(x) exp
{

1
a0

(ak−1x
k−1 + akx

k)
}
. (39)

Iterating the procedure, we obtain the k-fold approxima-
tion (36) in the form

f∗...∗k (x) = a0 exp
{

1
a0

(a1x+ a2x
2 + · · ·+ akx

k)
}
. (40)

We see that the kth approximation (40) is expressed
through a part of the initial perturbation series (26),
namely, through

pk(x)− a0 =
k∑
n=1

anx
n .

With the notation

p′k(x) ≡
k∑

n=0

a′nx
n, (41)

in which a′n ≡ an+1, n = 0, 1; 2, ...k, we may rewrite (40) as

f∗...∗k (x) = a0 exp
{
x

a0
p′k−1(x)

}
. (42)

The same functional renormalization procedure can
now be applied to the power series p′k−1(x), giving the
corresponding self-similar approximation

f ′k−1(x) = a′0 exp
{
x

a′0
p′′k−2(x)

}
, (43)

in which

p′′k(x) ≡
k∑
n=0

a′′nx
n, a′′n ≡ an+2. (44)
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With this renormalization, we transform (42) into

f∗...∗k (x) = a0 exp
{
x

a0
f ′k−1(x)

}
. (45)

Combining (43) and (45), we have

f∗...∗k (x) = a0 exp

{
x

a0
a1 exp

{
x

a1
p′′k−2(x)

}}
. (46)

Converting k times all power series in the exponentials,
with the use of the notation

b0 = a0 , bk =
ak
ak−1

, k = 1, 2, . . . , (47)

we obtain the bootstrap self-similar approximation

f̃k(x) = b0 exp
[
b1x exp

(
b2x exp

(
. . . bk−1x exp(bkx)

))
. . .
]
,

(48)

introduced by Yukalov and Gluzman [32]. It is this funda-
mental result that we use to obtain expressions (8) and (9)
in the main text.
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